Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(10): 1675-1687, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37653338

RESUMO

Sex determination evolved to control the development of unisexual flowers. In agriculture, it conditions how plants are cultivated and bred. We investigated how female flowers develop in monoecious cucurbits. We discovered in melon, Cucumis melo, a mechanism in which ethylene produced in the carpel is perceived in the stamen primordia through spatially differentially expressed ethylene receptors. Subsequently, the CmEIN3/CmEIL1 ethylene signalling module, in stamen primordia, activates the expression of CmHB40, a transcription factor that downregulates genes required for stamen development and upregulates genes associated with organ senescence. Investigation of melon genetic biodiversity revealed a haplotype, originating in Africa, altered in EIN3/EIL1 binding to CmHB40 promoter and associated with bisexual flower development. In contrast to other bisexual mutants in cucurbits, CmHB40 mutations do not alter fruit shape. By disentangling fruit shape and sex-determination pathways, our work opens up new avenues in plant breeding.


Assuntos
Cucurbitaceae , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Etilenos/metabolismo , Cucurbitaceae/genética , Flores , Regulação da Expressão Gênica de Plantas
2.
Nat Commun ; 14(1): 469, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36709329

RESUMO

The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.


Assuntos
Resposta ao Choque Térmico , Solanum lycopersicum , Resposta ao Choque Térmico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica , Cromatina/genética , Solanum lycopersicum/genética
3.
Science ; 378(6619): 543-549, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378960

RESUMO

Male and female unisexual flowers evolved from hermaphroditic ancestors, and control of flower sex is useful for plant breeding. We isolated a female-to-male sex transition mutant in melon and identified the causal gene as the carpel identity gene <i>CRABS CLAW (CRC)</i>. We show that the master regulator of sex determination in cucurbits, the transcription factor <i>WIP1</i> whose expression orchestrates male flower development, recruits the corepressor TOPLESS to the <i>CRC</i> promoter to suppress its expression through histone deacetylation. Impairing TOPLESS-WIP1 physical interaction leads to <i>CRC</i> expression, carpel determination, and consequently the expression of the stamina inhibitor, the aminocyclopropane-1-carboxylic acid synthase 7 (<i>CmACS7</i>), leading to female flower development. Our findings suggest that sex genes evolved to interfere with flower meristematic function, leading to unisexual flower development.


Assuntos
Cucurbitaceae , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Processos de Determinação Sexual , Flores/genética , Flores/crescimento & desenvolvimento , Meristema/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cucurbitaceae/genética , Cucurbitaceae/crescimento & desenvolvimento
4.
Curr Biol ; 32(11): 2390-2401.e4, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35525245

RESUMO

Shapes of vegetables and fruits are the result of adaptive evolution and human selection. Modules controlling organ shape have been identified. However, little is known about signals coordinating organ development and shape. Here, we describe the characterization of a melon mutation rf1, leading to round fruit. Histological analysis of rf1 flower and fruits revealed fruit shape is determined at flower stage 8, after sex determination and before flower fertilization. Using positional cloning, we identified the causal gene as the monoecy sex determination gene CmACS7, and survey of melon germplasms showed strong association between fruit shape and sexual types. We show that CmACS7-mediated ethylene production in carpel primordia enhances cell expansion and represses cell division, leading to elongated fruit. Cell size is known to rise as a result of endoreduplication. At stage 8 and anthesis, we found no variation in ploidy levels between female and hermaphrodite flowers, ruling out endoreduplication as a factor in fruit shape determination. To pinpoint the gene networks controlling elongated versus round fruit phenotype, we analyzed the transcriptomes of laser capture microdissected carpels of wild-type and rf1 mutant. These high-resolution spatiotemporal gene expression dynamics revealed the implication of two regulatory modules. The first module implicates E2F-DP transcription factors, controlling cell elongation versus cell division. The second module implicates OVATE- and TRM5-related proteins, controlling cell division patterns. Our finding highlights the dual role of ethylene in the inhibition of the stamina development and the elongation of ovary and fruit in cucurbits.


Assuntos
Cucurbitaceae , Frutas , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Etilenos/metabolismo , Flores , Regulação da Expressão Gênica de Plantas , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Mol Plant ; 14(7): 1185-1198, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33964458

RESUMO

Fruit set is inhibited by adverse temperatures, with consequences on yield. We isolated a tomato mutant producing fruits under non-permissive hot temperatures and identified the causal gene as SlHB15A, belonging to class III homeodomain leucine-zipper transcription factors. SlHB15A loss-of-function mutants display aberrant ovule development that mimics transcriptional changes occurring in fertilized ovules and leads to parthenocarpic fruit set under optimal and non-permissive temperatures, in field and greenhouse conditions. Under cold growing conditions, SlHB15A is subjected to conditional haploinsufficiency and recessive dosage sensitivity controlled by microRNA 166 (miR166). Knockdown of SlHB15A alleles by miR166 leads to a continuum of aberrant ovules correlating with parthenocarpic fruit set. Consistent with this, plants harboring an Slhb15a-miRNA166-resistant allele developed normal ovules and were unable to set parthenocarpic fruit under cold conditions. DNA affinity purification sequencing and RNA-sequencing analyses revealed that SlHB15A is a bifunctional transcription factor expressed in the ovule integument. SlHB15A binds to the promoters of auxin-related genes to repress auxin signaling and to the promoters of ethylene-related genes to activate their expression. A survey of tomato genetic biodiversity identified pat and pat-1, two historical parthenocarpic mutants, as alleles of SlHB15A. Taken together, our findings demonstrate the role of SlHB15A as a sentinel to prevent fruit set in the absence of fertilization and provide a mean to enhance fruiting under extreme temperatures.


Assuntos
MicroRNAs/fisiologia , Proteínas de Plantas/fisiologia , RNA de Plantas/fisiologia , Solanum lycopersicum/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Perfilação da Expressão Gênica , Zíper de Leucina , Solanum lycopersicum/genética , Partenogênese/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...